Canonical active Brownian motion.
نویسندگان
چکیده
Active Brownian motion is the complex motion of active Brownian particles. They are "active" in the sense that they can transform their internal energy into energy of motion and thus create complex motion patterns. Theories of active Brownian motion so far imposed couplings between the internal energy and the kinetic energy of the system. We investigate how this idea can be naturally taken further to include also couplings to the potential energy, which finally leads to a general theory of canonical dissipative systems. Explicit analytical and numerical studies are done for the motion of one particle in harmonic external potentials. Apart from stationary solutions, we study nonequilibrium dynamics and show the existence of various bifurcation phenomena.
منابع مشابه
Swarms with canonical active Brownian motion.
We present a swarm model of Brownian particles with harmonic interactions, where the individuals undergo canonical active Brownian motion, i.e., each Brownian particle can convert internal energy to mechanical energy of motion. We assume the existence of a single global internal energy of the system. Numerical simulations show amorphous swarming behavior as well as static configurations. Analyt...
متن کاملInfinite canonical super-Brownian motion and scaling limits
We construct a measure valued Markov process which we call infinite canonical superBrownian motion, and which corresponds to the canonical measure of super-Brownian motion conditioned on non-extinction. Infinite canonical super-Brownian motion is a natural candidate for the scaling limit of various random branching objects on Zd when these objects are (a) critical; (b) mean-field and (c) infini...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
On Gaussian Processes Equivalent in Law to Fractional Brownian Motion
We consider Gaussian processes that are equivalent in law to the fractional Brownian motion and their canonical representations. We prove a Hitsuda type representation theorem for the fractional Brownian motion with Hurst index H [ 2 . For the case H> 2 we show that such a representation cannot hold. We also consider briefly the connection between Hitsuda and Girsanov representations. Using the...
متن کاملCFD simulations on natural convection heat transfer of alumina-water nanofluid with Brownian motion effect in a 3-D enclosure
The CFD simulation has been undertaken concerning natural convection heat transfer of a nanofluid in vertical square enclosure, whose dimension, width height length (mm), is 40 40 90, respectively. The nanofluid used in the present study is -water with various volumetric fractions of the alumina nanoparticles ranging from 0-3%. The Rayleigh number is . Fluent v6.3 is used to simulate nanofluid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2009